Сергей Титов - Естествознание. Базовый уровень. 11 класс


Естествознание. Базовый уровень. 11 класс читать книгу онлайн
Естественно, спрашивающий не видит своих собеседников. Если после любого количества вопросов он не найдёт способа определить, кто из его собеседников человек, а кто – машина, значит, данная машина действительно умеет мыслить.
Создание такой машины – дело будущего, возможно далёкого, но, учитывая современные темпы развития техники, не исключено, что и ближайшего.
Пока мы имеем дело с устройствами, чья работа напоминает интеллектуальную, но всё же, по сути, сводится к сравнениям и вычислениям, хотя и оперирующим огромным объёмом информации и производимым с огромной скоростью. «Думающая» машина обязательно обладает базой данных и базой знаний. В первую заносятся все факты, числа, изображения, звуки и всё прочее, что может иметь хоть какое-то отношение к области деятельности системы. В базе знаний хранятся всевозможные логические, математические и ассоциативные правила и программы, с помощью которых можно оперировать этими фактами. Полученные результаты сравниваются с другими фактами, находящимися в базе данных, или с сигналами, поступающими из внешней среды в ответ на действия, совершённые в результате работы машины. В зависимости от результата запускается новый цикл работы компьютера. Можно ли считать такую деятельность интеллектом?
Рис. 253. Матч Каспаров компьютер
Шахматы и компьютерДля примера рассмотрим популярную тему, касающуюся шахматных компьютеров. Способен ли шахматный суперкомпьютер обыграть лучшего гроссмейстера? В своё время, находясь в прекрасной спортивной форме, тогдашний чемпион мира Гарри Каспаров (род. 1963) провёл несколько серий матчей с шахматными компьютерами (рис. 253). В 1980-х гг. он легко выигрывал все партии. Но через десять лет чемпион мира впервые проиграл матч компьютеру. Последующие матчи сводились в основном к ничейным результатам. Можно ли на этом основании говорить, что интеллект компьютера превышает или, во всяком случае, равен интеллекту Каспарова? Сомнительно, учитывая, что программа, с которой играл Каспаров в 2003 г., способна оценить 3–4 млн позиций в секунду. Обладай Каспаров такой же скоростью счёта, у машины вряд ли были бы шансы. Ведь программу для машины составлял человек, вероятно, талантливый шахматист, но всё-таки уступающий чемпиону мира. Так что, скорее всего, мы имеем дело не с искусственным интеллектом, а с такими техническими преимуществами, как лучшая память и большая скорость.
Вот если бы компьютер догадался стащить с доски ферзя в то время, когда Каспаров отвернулся, это уже можно было бы назвать проявлением интеллекта.
Есть ли у компьютера дедукцияВообще, по мнению многих исследователей, искусственный интеллект должен обладать способностью к дедукции, т. е. к предсказанию таких фактов, событий и решений, которых не было в его базах. Писатели-фантасты часто обсуждают тему полного отсутствия у роботов чувства юмора. Это понятно: суть юмора сводится к тому, что рассказ о каком-либо эпизоде завершается не путём ожидаемой, а путём особенной, нестандартной логики. Если такая логика не заложена создателем программы, то робот завершит рассказ в соответствии с нормальной логикой, и в этом не будет ничего смешного.
В последнее время широко обсуждается и исследуется проблема сращивания естественного и искусственного интеллектов, т. е. возможность создания некоего гибрида живого мозга человека и компьютера, обладающего огромным объёмом памяти и способностью к молниеносному проведению логических и математических операций. Это направление может иметь большие перспективы, учитывая, что в опытах на животных уже получены некоторые интересные результаты. Мы ещё вернёмся к этой теме в последнем параграфе учебника.
Проверьте свои знания1. Кто является автором слова «робот»?
2. В чём заключается тест Тьюринга? Попробуйте придумать такие вопросы, по ответам на которые, по вашему мнению, можно различить человека и компьютер. Объясните, какую разницу вы ожидаете услышать в ответах.
3. Почему выигрыши шахматного компьютера у чемпиона мира необязательно свидетельствуют о более высоком интеллекте у компьютера?
4. Сравните понятия «робот» и «искусственный интеллект». Почему между ними нельзя поставить знак равенства?
5. Где, по вашему мнению, использование искусственного интеллекта особенно актуально? Объясните свою точку зрения.
Задания1. Вспомните и приведите примеры из художественных произведений описаний искусственного интеллекта. Проанализируйте, можно ли это считать действительно проявлениями интеллекта.
2. Используя дополнительную литературу и ресурсы Интернета, подготовьте сообщение на тему «Искусственный интеллект. Настоящее и перспективы».
3. Приведите примеры использования роботов. В каких областях народного хозяйства они в настоящее время применяются наиболее широко?
4. Подготовьтесь к дискуссии на тему «Мозг человека и ЭВМ».
§ 75 Наночастицы и перспективы нанотехнологий
– Если бы, – говорит, – был лучше мелкоскоп, который в пять миллионов увеличивает, так вы изволили бы, – говорит, – увидать, что на каждой подковинке мастерово имя выставлено: какой русский мастер ту подковку делал.
Н. С. Лесков. ЛевшаНанотехнология – это относительно новая область теоретических и прикладных междисциплинарных исследований, объектом которой являются частицы, имеющие размеры от 1 до 100 нм. Это больше, чем размер атомов или неорганических молекул, но значительно меньше, чем размеры объектов, которыми принято оперировать в обычной технике (рис. 254). Такие частицы обладают целым рядом свойств, отличных как от свойств атомов и небольших молекул, так и от свойств крупных частиц.
Для практических целей важно, чтобы наночастицы располагались в строго определённом порядке и образовали структуру с требуемыми свойствами. Мы уже рассматривали естественные наноструктуры, когда говорили об устройстве живой клетки. Клетка состоит из огромного числа атомов и молекул, и при этом недостаточно, чтобы просто соблюдалось общее количество атомов и молекул каждого вида и пропорциональное соотношение между ними. Для того чтобы клетка могла жить, требуется, чтобы все атомы в молекулах были расположены с строго определённом порядке. Достаточно поменять местами несколько нуклеотидов в молекуле ДНК, и клетка окажется нежизнеспособной. А поскольку размеры крупных органических молекул в клетке как раз соответствуют размерам наночастиц, то процессы самоудвоения ДНК, синтеза белка и деления клетки, по сути, являются нанотехнологиями, осуществляемыми самой природой.
Другим рассмотренным нами примером нанотехнологии, но уже осуществляемой искусственно, является создание электронных интегральных микросхем, где расположенные в строгом порядке элементы имеют размеры порядка нескольких десятков нанометров, т. е. как раз представляют собой наночастицы.
Рис. 254. Размеры некоторых биологических объектов и молекул (логарифмический масштаб)
В настоящее время нанотехнология считается одним из самых перспективных направлений научно-технического развития человечества.
Рис. 255. Ричард Фейнман (1918–1988) – американский физик, лауреат Нобелевской премии по физике 1965 г.
История появления нанотехнологииВпервые термин «нанотехнология» употребил в 1974 г. японский физик Норио Тани гути. Однако о возможности применения нанотехнологий заговорили гораздо раньше. В 1959 г. американский физик Ричард Фейнман (рис. 255) опубликовал работу, в которой оценил перспективы уменьшения размеров производимых вещей. Он научно обосновал, что с точки зрения фундаментальных законов природы нет препятствий для того, чтобы собирать предметы из отдельных атомов и использовать их, например, для записи информации. Лекция Фейнмана «Там, внизу, много места» («There’s Plenty of Room at the Bottom»), прочитанная им в Калифорнийском технологическом институте, стала легендарной. Вот отрывок из этого выступления: «По моим оценкам, в 24 миллионах книг размером с Британскую энциклопедию содержится 1015 бит информации. Думаю, что для хранения бита информации достаточно 100 атомов. Выходит, что вся собранная человечеством информация может храниться в кубе с гранями всего по полмиллиметра, т. е. в крохотной частичке пыли, едва различимой человеческим глазом. Так что внизу много места!»
Тогда многие восприняли его слова как фантастику. Ведь в то время ещё не существовало ни самих технологий, ни даже их проектов, позволяющих оперировать с отдельными атомами.
Главная проблема нанотехнологии заключается в том, чтобы найти способ заставить молекулы выстраиваться в определённом порядке, т. е. самоорганизовываться требуемым способом. Для решения этой проблемы был даже создан особый раздел химии – супрамолекулярная химия. Часто в нанотехнологии используют биологические крупные молекулы, по самой своей природе способные к самоорганизации. Известен, например, приём, используемый для соединения двух молекул в требуемый комплекс. Назовём эти молекулы А и В. Берётся молекула ДНК и разделяется на две взаимно комплементарные цепочки. К концу одной цепочки присоединяют молекулу А, а к другой – В. Затем оба компонента смешивают, комплементарные цепочки ДНК соединяются водородными связями, и в результате молекула А оказывается точно возле молекулы В. Между ними происходит взаимодействие, и образуется комплекс А. После этого молекулу ДНК можно удалить.




